Муниципальное общеобразовательное учреждение среднее общеобразовательная школа с углубленным изучением предметов художественно эстетического цикла

Исследовательский проект

«Выращивание растений в гидропонной установке»

Выполнила:

Шипова Виктория Дмитриевна, ученица 11A класса МОУ СОШ №23

Руководители:

Бакаева Татьяна Анатольевна, учитель химии МОУ СОШ №23

Пахмутова Ольга Анатольевна, учитель биологии МОУ СОШ №23

Комсомольск-на-Амуре

СОДЕРЖАНИЕ

ВВЕДІ	ЕНИЕ
1. TEO	ОРЕТИЧЕСКИЙ МАТЕРИАЛ
1.1.	История создания гидропонных установок
1.2.	Модель проектирования гидропонной установки6
1.3.	Питательные среды для гидропонной установки7
1.4.	Определение и выбор овощных культур9
1.5.	Субстраты для гидропонной установки11
2. ПРАКТ	ИЧЕСКАЯ ЧАСТЬ: ОРГАНИЗАЦИЯ И РЕЗУЛЬТАТЫ
исслед	
2. 1. M	Іетодика изготовления гидропонной установки13
2. 2. П	[риготовление питательного раствора14
2. 3. H	Выращивание гидропонной культуры в условиях «Аптекарского
огој	рода»
вывод	16
СПИСОК	ЛИТЕРАТУРЫ18
ПРИЛОЖ	ЕНИЕ19

ВЕДЕНИЕ

Гидропоника - наука о выращивании растений на искусственных почвах с использованием натуральных или искусственных субстратов, таких как гравий, песок, торф, опилки, минеральная вата. Необходимые для роста питательные вещества растворяются в воде, и этот раствор подается к растениям в точных дозах и в заданных интервалах времени.

Основным аргументом в пользу гидропоники служит то, что органические вещества, из которых примерно на 95% состоит сухое вещество растений, образуется самим растением из воды и углекислого газа, в процессе фотосинтеза. Они никогда не извлекаются из почвы в готовом виде. Почва лишь поставляет недостающие 5% минеральных соединений и способствует укоренению растений. И здесь совершенно всё равно, будут ли находиться корни в масле рисовой шелухи, гравия, торфяной крошки или каменноугольного шлака. Субстрат выполняет лишь физическую роль и ничего общего с питанием растением не имеет. Для этого служит так называемый питательный раствор. [1]

Поскольку существует дефицит плодородных земель, тем более в городских условиях, выращивания растений с помощью гидропоники **является актуальным** и значительно снижаются затраты на обработку почвы, защиту от вредителей и сорняков. И, что более важно, по данным литературных источников, использование безземельных субстратов позволяет выращивать больше растений на ограниченной площади. Вода и удобрения используются значительно рациональнее за счет снижения потерь и возможности многократного использования.

Цель проекта:

Изучение условий выращивания растений в гидропонной установке, с последующим переносом их в почвенную среду.

Задачи проекта:

- 1. Изучение методик выращивания растений в гидропонике.
- 2. Сконструировать гидропонную установку для выращивания растений

3. Провести эксперимент по переносу растений, выращенных гидропоническим способом, в почвенную среду.

Объект исследования: овощные растения (огурцы, редька, кукуруза)

Предмет исследования: условия выращивания растений в гидропонной установке.

Гипотеза: Растения, выращенные в гидропонной установке могут продолжить свой жизненный цикл в почвенной среде.

Методы исследования: анализ литературных источников и результатов исследования; наблюдение.

Сроки проведения: с ноября 2015г. по июнь 2016 г.

Место проведения: комплексная лаборатория предметов естественнонаучного цикла, аптекарский огород МОУ СОШ №23

Практическая значимость: материалы данной работы могут представлять интерес для общественности (особенно для горожан, занимающихся деятельностью на дачах), а также могут быть использованы в образовательном процессе при изучении курса биологии.

1. ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

1.1.История создания гидропонных установок

История исследований по выращиванию растений не на естественных почвах начинается с глубокой древности. Археологические раскопки свидетельствуют, что висячие сады древнего Вавилона, вошедшие в число "Семи Чудес Света" были одной из первых удачных попыток земледелия на искусственных почвах. [2]

Плавающие сады Ацтеков в Центральной Америке - еще один пример удачного применения гидропоники. На берегах Озера Теночитлан (Мексика) кочевые племена были вытеснены с пахотных плодородных земель враждебными более сильными соседями. И тогда ацтеки построили из длинных стеблей тростника плоты. На них они уложили ил, поднятый со дна озера. Эти плоты назывались "Чампас". На них выращивался обильный урожай овощей, цветов, и даже деревья замечательно росли и плодоносили. Влагу растения получали корнями, которые пробивались вниз к воде[3]

Слово "гидропоника" произошло от двух греческих: "hydro"-вода и "ponos" - работа. Этот предельно простой принцип принимается за основу для всех форм современной гидропоники.

В последнее десятилетие гидропоника совершила большой шаг вперед в своем развитии за счет применения последних достижений науки и техники, передовых технологий. В современных гидропонных системах используются исключительно пластмассы, за исключением некоторых элементов выполненных из бронзы. Даже насосы изготавливаются с покрытием из эпоксидной смолы. Использование материалов такого типа вместе с нейтральными субстратами - путь к успеху за счет долговечности и безвредности для растений и человека.

Пластмассы освободили производителей от используемых до сего времени дорогих конструкций желобов и баков, сделанных из металла. С разработкой пригодных для использования насосов, таймеров, пластмассовой сантехнической арматуры, электромагнитных клапанов и другого

оборудования, гидропонные системы теперь могут быть полностью автоматизированы, уменьшая как основные, так и производственные издержки.

Другим важным прорывом в гидропонике явилась разработка полностью сбалансированного питания для растений. Исследования в этой области все еще продолжаются, но уже сегодня предлагается множество готовых решений.

1.2. Модель проектируемой гидропонной установки.

Большинство людей, услышав слово гидропоника, представляют себе растения с корнями, подвешенными в воде, в которой растворены питательные вещества. Это очень популярный метод гидропонного выращивания и существуют несколько типов систем, использующих воду в качестве субстрата. Так или иначе, вода критический элемент в росте растений, и использование её в качестве субстрата имеет много смысла.

Существует три основных способа выращивания растений без почвы:

- 1) Субстратная культура (агрегатопоника) выращивание растений на заменителях почвы твёрдом субстрате, в котором периодически поступает питательный раствор.
- 2) Водная культура (собственно гидропоника) выращивание растений в водном растворе.
- 3) Аэропоника (воздушная культура) выращивание растений ведётся в воздушной среде, а питательный раствор подаётся к корням в виде аэрозоля.
- 4) Ионитопоника сравнительно новый способ, который близок к агрегатопонике субстрат состоит из 2 типов синтетических ионообменных смол-катионита КЈ-2 и анионита ЭДЭ-10 П. Ионообменные смолы насыщаются питательными элементами на весь период вегетации, поэтому поливают их только чистой водой.[4]

Плюсы гидропонных установок:

- наиболее дешевый вариант из активных систем. Экономия – необходимость в условиях шаткой российской экономики;

- простота настройки и надежность. Исходя из всего вышесказанного, неоспоримый плюс для продвинутых новичков;
 - без питающего насоса. Тот же плюс, что и в фитильной системе;
- надежный, как холодильник «ЗиЛ», по причине малого количества ломких элементов.
 - приличный запас раствора гарантирует сохранность ваших растений
 - всё растёт и быстро (Приложение №2, 3)

1.3. Изучение состава питательных сред для гидропонной установки.

Важнейшее значение имеет выбор марки питательного вещества. Поскольку используемая среда считается, по определению, нейтральной, питательный раствор — единственный источник, из которого растение может получать питание. Сбалансированное и полноценное питание растений имеет первостепенное значение.

Какие соли нужны растениям? Очевидно, все какие есть, но на разных стадиях развития некоторые из них нужнее других. Черенки и молодые саженцы нуждаются как в азоте, так и в калии для лиственного роста, и в фосфоре для развития корней. Поэтому равная смесь питательных веществ для вегетации и цветения устанавливает на этой стадии хороший баланс. Позднее, во время вегетативного роста упор делается на азоте и калии. Азот — элемент, в котором растения нуждаются в большом количестве, но нужна осмотрительность, чтобы с ним не перестараться. В результате получаются растения с хлипкими стеблями, склонными к вытягиванию.

Для стадий цветения и плодоношения растение нуждается главным образом в фосфоре, но также в магнии и сере, причем сера является элементом, стимулирующим аромат.

Изучение теоретических аспектов рН и проводимости позволяют заняться практическим применением этих параметров.

Независимо от того, какой уровень pH растения предпочитают в грунте, на гидропонике они будут выращиваться в слегка кислотной pH. Это обусловлено различными причинами, и основная из них та, что при pH 7 и выше из раствора осаждается железо. Так что максимально высокий допустимый pH — около 6.8 с запасом для надежности. Однако в замкнутых системах все-таки лучше поддерживать pH ниже 6.5 во избежание недостаточности марганца.

Следует помнить, что проводимость, pH, влажность и прочие факторы — всего лишь инструменты, помогающие получить представление о происходящем, но визуальное наблюдение — лучший инструмент. Нужно внимательно смотреть на растения понимать, что они сообщают. [5]

При выращивании обычным способом растения получают углерод и кислород из воздуха, остальные элементы — из почвы, а в случае применения гидропоники — из питательного раствора.

Питательные элементы — это азот, фосфор, калий, кальций, железо и многие другие, в том числе, микроэлементы. Они необходимы растениям и не могут быть заменены ничем другим. Питательные вещества — это соединения, содержащие эти элементы. Известно, что в почве питательные элементы содержатся в четырех формах:

- 1. прочно фиксированные почвой и недоступные для растений;
- 2. труднорастворимые неорганические соли;
- 3. адсорбированные на поверхности коллоидов и доступные для растений благодаря ионному обмену;
- 4. растворенные в воде и легко доступные для растений.[6]

За поглощение питательных элементов из почвы или питательного раствора отвечает корневая система. Основной зоной поглощения питательных веществ является зона растяжения (роста) и зона корневых волосков. Она же снабжает необходимыми веществами и надземные корни растений.

Подсчитано, что на 1 мм2 корневой поверхности развивается от 200 до 400 корневых волосков, что позволяет корневой поверхности увеличиваться в сотни раз. Корневые волоски обладают повышенной способностью к поглощению.

Различные зоны корня отвечают за поглощение различных минеральных элементов. Установлено, что Ca2+ поступает в апикальные зоны, K+, NH+4, фосфаты адсорбируются всей поверхностью корневой системы.

1.4. Определение и выбор овощных культур для выращивания в гидропонной установке.

Гидропоника позволяет выращивать любые овощи в промышленных масштабах. Особенно выгодно применять гидропонику в засушливых районах, при дефиците воды. Но ее с успехом можно применить и на малой «сцене» - на приусадебном участке или на балконе. Для крытого огорода самое первое - найти подходящее место, где будет тепло, яркий солнечный свет не менее 6 часов в сутки и свежий воздух.

Теперь надо выбрать, какие овощи можно выращивать в своем саду. Картофель, свеклу и морковь вы можете купить за небольшую цену на базаре, от них очень мало пользы в гидропонике. Лучше брать боле дорогие и редкие овощи. Из литературных источников было установлено, что можно выбрать без особых раздумий:

Брокколи. Брокколи родом из Малой Азии, это разновидность цветной капусты, очень здоровая и питательная культура с маленькими цветками. Одно растение даст вам не огромное количество продукта, но достаточное, чтобы побаловаться тушеной в растопленным сливочным масле капустой, вкус потрясающий!

Шпинат. Это культура родом из Персии богата железом, очень полезный овощ для людей, которые нуждаются в железе. Шпинат растет очень быстро, и вы можете собирать его несколько раз за сезон.

Огурец. Для огурца также важно обеспечение необходимого объема — каждому отдельно взятому растению необходимо не менее 5–6 литров субстрата. Для выращивания огурца рекомендуется использовать рыхлый, хорошо пропускающий воду и воздух материал, так как корневая система этой культуры требует активного газообмена.

Лук. Наиболее простым гидропонным способом выращивания является культивация зеленого лука. Для этого даже субстрат не нужен. Можно просто поместить луковицу в баночку с водой и через некоторое время она порадует вас свежими полезными перышками.

Баклажан. Баклажаны еще называют синими помидорами. Всего несколько кустов обеспечат вас вкуснейшей икрой.

Зеленая фасоль. Зеленые бобы являются хорошим вариантом для гидропоники, особенно зимой. Они предпочитают свободу и хорошую дренажную систему. Им не нужна высокая температура.

Томаты. Очень хорошо растут на гидропонике томаты. С одного куста можно собрать 10-20 кг помидор. Все зависит от сорта и ухода. Красиво растут томаты сорта Роксолана.

Перец. Будь то болгарский сладкий или острый перец чили, все сорта хорошо растут на гидропонике. Эти растения любят тепло и свет.

Зелень. Для выращивания зелени из семян можно использовать пластиковые горшочки высотой и диаметром 5 сантиметров, с достаточно крупными отверстиями на дне. В каждую такую емкость, заполненную любым доступным субстратом, высевают семена: салата — 4 штуки; укропа, петрушки или кориандра — 25–30 штук; мелиссы, щавеля, базилика, горчицы — 15–20 штук. Горшочки поливают теплой водой, накрывают полиэтиленом и помещают в теплое место для проращивания.

Когда рассада подрастет (для салата — это 7–10 дней, для петрушки, укропа и другой зелени — 15–20 дней), горшочки помещают в имеющуюся гидропонную установку, где и выращивают до полного созревания.

Клубника. Эту вкусную и невероятно полезную ягоду можно выращивать, применяя различные гидропонные методы, однако наиболее подходящим считается способ капельного полива.

Растения высаживаются в имеющийся субстрат, а питательный раствор подают в зону корней с помощью системы капельниц. Специалисты в качестве субстрата в данном случае рекомендуют использовать минеральную вату, кокосовое волокно либо различные торфяные смеси [7]

Таким образом, были выбраны следующие овощные культуры для выращивания в гидропонной установки с последующим переносом в почву:

Огурец - растет и развивается достаточно быстро, рано вступает в период плодоношения, поэтому это растение требует повышенного содержания питательных веществ, по сравнению, например, с томатом. Огурец, вообще, считается наиболее требовательной культурой к составу, кислотности и концентрации питательного раствора. В большом количестве огурцу необходимы: N, P, K, Ca, отсутствие которых крайне негативно сказывается на его самочувствии. По литературным источникам успешно может выращиваться в гидропонных установках.

Редька, кукуруза, кабачок – были выбраны для эксперимента, данных о росте этих культур в условиях гидропоники не найдены.

1.5. Субстраты для гидропоники

При выращивании растений без почвы используют различные субстраты. Чаще всего это местные материалы. В любом случае субстрат должен отвечать следующим требованиям:

- не содержать ядовитых веществ и быть химически нейтральным или инертным к питательному раствору. В частности, субстрат не должен содержать карбоната кальция (CaCO3). Данное соединение способствует повышению щелочной реакции питательного раствора и вызывает осаждение фосфатов.

- Иметь достаточную водоудерживающую способность и хорошую аэрацию. Например, измельченный вермикулит, перлит и керамзит хорошо удерживают воду, а гравий и гранитный щебень плохо.
- Субстрат должен обладать достаточной прочностью. Вермикулит, керамзит, перлит не отвечают данному требованию и со временем крошатся. Это ухудшает аэрацию корневой системы и экономически невыгодно, поскольку подобные субстраты требуют частой замены не реже одного раза в три-четыре года.

Субстратом для гидропоники могут служить гранитный щебень, измельченный керамзит, вспученный вермикулит, перлит, каменноугольный шлак, полихлорвиниловый субстрат. Иногда применяют органические субстраты: мох, древесные опилки, торф. Каждый из вышеперечисленных материалов имеет свои достоинства и недостатки.

В связи с этим был разработан материал, наиболее соответствующий требованиям к субстратам гидропоники, — гродан (минеральная вата). Также в качестве субстрата иногда используют высокомолекулярные синтетические соединения: вспененный полистирол, полиуретан, термопластические полимеры, синтетические пенистые смолы.

В качестве органических субстратов используют торф, мох (сфагнум), древесную кору, опилки и подобные материалы. Однако ни один из них нельзя считать полностью соответствующим необходимым требованиям: хотя их физические свойства очень неплохи, для чистой гидропоники они все-таки химически слишком активны. Кроме того, в подобных субстратах могут содержаться семена сорняков, возбудители грибковых, вирусных и бактериальных болезней и яйца или личинки вредителей.

Большинство наполнителей для гидропонных сред являются минеральными. К ним относятся как уже упомянутые песок, гравий, щебень и стеклянные бусинки, так и другие вещества, включая специально создаваемые именно для гидропоники. [8]

2.ПРАКТИЧЕСКАЯ ЧАСТЬ

2. 1. Методика изготовления гидропонной установки

Нашу гидропонную установку мы создали на основе гидропонной установки Шарупича В.П. Авторы патента: Шарупич В.П.

A01G31/02 - особые устройства для этой цели (выращивание растений в горшках, ящиках или теплицах вообще A01G 9/00; устройства для автоматического орошения A01G 27/00)

Необходимые материалы:

- •трубы ПВХ и необходимые фитинги;
- вода;
- •растения;
- •насос;
- •подставка для системы, изготовленная из ПВХ трубы или из другого материала;
 - •горшки для растений;
 - •керамзит;
 - •минеральные удобрение для гидропонной системы.

<u>Шаг 1.</u> Определиться с местом расположения трубы. От этого параметра будет зависеть технические данные насоса и перечень дополнительной водопроводной арматуры.

<u>Шаг 2.</u> На поверхности трубы нужно начертить ровную линию, на этой оси нужно высверлить отверстия под горшочки. Диаметр горошков должен быть немного больше диаметра отверстий, они должны в них фиксироваться, но не проваливаться. Можно ставить горшочки и на дно трубы, но такой вариант создаст значительные препятствия для циркуляции воды. Расстояние между отверстиями в пределах 10 см.

<u>Шаг 3.</u> Мы заготовили торцевые заглушки труб с отводами. Это довольно сложный процесс, требует умения и практических навыков. К заглушкам нужно приклеить отводы патрубков для подачи воздуха в

питательный раствор. Для этого мы высверлили отверстия диаметром на 1–2 мм меньше внешнего диаметра труб. Аккуратно зачистили место среза, убрали все заусеницы и неровности. Для полной герметизации место стыка нужно дополнительно проклеить термоактивным или термопластичным клеем, лучше двухкомпонентным. Но нам это не понадобилось.

<u>Шаг 4</u>. Перед началом работы нужно залить в систему обыкновенную воду и проверить все соединения на герметичность. При обнаружении протечек нужно отремонтировать проблемные места. У нас таких мест не было обнаружено, значит мы сделали все аккуратно и правильно.

3. Шаг 5. В горшки, в нашем случае это пластиковые стаканчики, в которых мы предварительно сделали отверстия по бокам и внизу для поступления питательного раствора к корневой системе растения, помещаются семена или саженцы и аккуратно засыпаются керамзитом. Это нужно сделать так, чтобы не забить отверстия, через которые будет поступать вода с солями.[9] (Приложение № 4) Следует помнить, что растения растут. За их ростом нужно следить, иначе со временем они могут перевернуть систему гидропоники. О системе гидропоники нельзя забывать ни на день, так как все время нужно проверять уровень воды, температуру, освещение и наличие питательного раствора. Для того, чтобы нам было проще, мы вели дневник наблюдений, где ежедневно отмечали изменения в внешнем виде растений, над которыми мы проводили эксперимент. 2. Приготовление

питательного раствора

Мы использовали рецепт Галины Александровны Кизимы. Чтобы растения получали необходимые микроэлементы, мы выбрали оптимальную рецептуру питательного раствора, заменив некоторые составляющие, для нашего эксперимента.[10]

Для приготовления раствора были использованы следующие минеральные удобрения (г/2л):

1. Азотнокислый натрий (NaNO3) – 4

- 2. Фосфат кальция (Ca3(PO4)2) 3
- 3. Аммоний сернокислый ((NH4)2SO4) 1
- 4. Хлористый калий (KCl) 5

Отмерив, нужное количество удобрений, смешиваем и растворяем в воде. Получившийся питательный раствор помещаем в гидропонную установку. Меняли раствор 1 раз в неделю.

2. 3. Выращивание гидропонной культуры в условиях «Аптекарского огорода»

Для подтверждения гипотезы проекта в гидропонной установке мы решили выращивать следующие культуры: редька, кукуруза, кабачки, огурцы. (Приложение № 5) За развитием и ростом растений мы следили и делали записи в Дневнике наблюдений. (Приложение №1)

В первый день летней практики на аптекарском огороде, а то есть 2 июня, мы произвели высадку гидропонически выращенных культур в почву. (Приложение № 1, 6) После первой недели жизни растений в земле мы заметили, что редька, кукуруза и кабачки приспособились к жизни на аптекарском огороде. Но огурцы не смогли адаптироваться к жизни в земле. Мы предполагаем, что это связано с недостаточным удобрением почвы и суровой климатической обстановки. После окончания сезона, мы увидели, что редька, двулетнее растение, которое в первый год образует корнеплод с розеткой листьев, а во второй цветет и дает семена [11], расцвела в 1год существования. Это связано с тем, что при перемещении из гидропоники в огород, растение не верно приняло климатическое изменение и вместо того, чтобы образовать корнеплод, оно зацвело. Это наше новое открытие!

ВЫВОД

В ходе работы над проектом были изучены: история развития гидропоники, теоретические условия выращивания растений в гидропонных установках, сконструирована гидропонная установка для проведения эксперимента по выращиванию овощных культур с последующим переносом их в почву на аптекарском огороде школы.

Проводя исследования, было установлено, что при выращивании растений можно с успехом использовать гидропонику, особенно в зимнее время, когда питание должно быть умеренным, а испарение не велико.

С помощью гидропоники можно выращивать посадочный материал из мелких семян, которые прорастают быстрее, чем в открытом грунте и более эффективно.

Создать гидропонную установку можно своими руками за короткое время и совсем не дорого.

В ходе проекта было установлено:

- 1. При гидропонном выращивании растений они растут здоровыми и быстрее, чем в почве;
- 2. Корни растений не пересыхают и получают достаточное количество кислорода;
- 3. Исчезают такие проблемы, как почвенные вредители и болезни;
- 4. Растения, которые были выращены в гидропонике, могут быть перемещены в грунт, но при условии, что культура сможет перенести новую климатическую обстановку.

Таким образом, в ходе проекта были изучены условия выращивания растений в гидропонной установке, с последующим переносом их в почвенную среду.

Гипотеза подтвердилась, растения, выращенные в гидропонной установке, могут продолжить свой жизненный цикл в почвенной среде.

Полученные результаты можно использовать в дальнейшем для выращивания овощных культур в домашних и лабораторных условиях.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зальцер Эрнст Гидропоника для любителей
- 2. Ю. Зинин, «Вавилон: из мглы веков в сегодняшний день», Наука и Жизнь, 2011, № 1, стр 64.
- 3. Popper, Virginia. «Investigating Chinampa Farming.» Backdirt (Cotsen Institute of Archaeology). Fall/Winter 2000.
- 4. Лаврова С. А. Занимательная ботаника / С. А. Лаврова. Белгород : Белый город, 2008. 144 с.
- 5. Все о цветах и садоводстве. Действительно все (http://lavkaflo.ru/)
- 6. Энциклопедический словарь юного химика/ Сост. В.А, Крицман, В.В. Станцо. -М.: Педагогика, 1982.- С.52
- 7. Гиль Л.С., Пашковский А.И., Сулима Л.Т. Современное овощеводство закрытого и открытого грунта. Практическое руководство. Житомир: "Рута", 2012. 468 с. ISBN 978-617-581-053-8.
- 8. Выращивание растений без почвы В.А.Чесноков, Е.Н.Базырина, Т.М.Бушуева и Н.Л.Ильинская Издательство Ленинградского университета, 1960
- 9. Гидропоника для любителей Эрнст Зальцер Издательство "Колос" Москва — 1965
- 10. Уильям Тексье. Гидропоника для всех. Все о садоводстве на дому. M.: HydroScope, 2013. 296 с. ISBN 978-2-84594-089-5.
- 11. Алексеев Ю. Е. и др. Редька Raphanus // Травянистые растения СССР. В 2 т / Отв. ред. доктор биол. наук Работнов Т. А. М.: Мысль, 1971. Т. 1. С. 428—429. 487 с. 60 000 экз.

Дневник наблюдений за выращиванием растений с помощью гидропоники

Дата	Наблюдения	Фотографии наблюдений
21.03.2016	Положили проращивать семена лекарственных растений: кориандр, лук, эстрагон, базилик, сельдерей, редька	200 120 120 120 120 120 120 120 120 120
23.03.2016	Первые проросли семена редьки	
24.03.2016	Пророщенные семена редьки перенесли в гидропонную установку	

	Tu .	
30.03	Появились зеленые побеги редьки	
31.03	Развивается корневая система на огурцах, кабачках	
02.04	У кукурузы развиваются первые семядольные листья	44
05.04	Наблюдается рост побегов кукурузы, из 11 пророщенных семян вошли в стадию активного роста 5.	
	Кабачки 5 из 6 проросли, активно развивается одно растение	1

	Огурцы все 6 семян проросли и развиваются.	
	У редьки из почек развиваются настоящие листья. Высота побегов составляет 9 см.	
07.04	Активно развиваются проростки огурцов	
08.04	У кабачков появился настоящий лист	

09.04	Перенесли в гидропонную установку рассаду петунии, посеянную в грунт 21.03	
11.04	Собрали гидропонную установку с воздушной аэрацией, состоящую из пластиковой трубы и компрессора для аквариумов. В качестве субстрата для растений использовали керамзит	
13.04	Перенесли в гидропонную установку рассаду огурцов и хабачков	

14.04	Приготовили питательное удобрение для гидропоники, развели в воде микроэлементы, необходимые чтобы вырастить рассаду. За основу берутся следующие химические составляющие: азот, фосфор и калий	
15.04	Продемонстрировали гидропонную установку в рамках «Архитектурной школы»	
16.04	Положили проращивать семена томатов для выращивания в гидропонной установке	
20.04.16	Из 12 семян томатов проросли только 6. Всхожесть семян50%.	

22.04.16	Из 7 растений высаженных в гидропонную установку только 2 растения активно растут	
25.04.16	Одно из 6 растений петунии погибло	
27.04.16	2 активно-растущих растения мы подвязали, так нак листовые пластины очень сильно оттягивают растение вниз.	
29.04.16	У редьки активно развиваются и растут корневые системы.	

10.05.16	Активный рост одного из семи растений, появление большого цветка у кабачка.	
14.05.16	Активное цветение больших форм огурцов	
18.05.16	Начало цветения малых форм огурцов, заметим, что рост, в этом случае, не влияет на цветение	

21.05.16	Растениям требуется более надежная опора, так нак самое высокое растение имеет высоту в 36 см и остальные растения не отстают.	
26.05.16	Быстрый рост растений, которые растут в малых гидропонных установках.	
29.05.16	Листья огурцов начинают желтеть и терять свою эластичность. Предполагаем дальнейшее увядание растений.	

30.05 Растения, выращиваемые в гидропонной установке, постепенно увядают. Предположительно это связанно с недостаточным местом для роста.

На этом завершается ведение дневника наблюдений за растениями произроставшими в гидропонной установке. В ходе эксперимента ни одно из растений не пострадало, все растения высажены на грядки школьного аптекарского огорода. С вами на протяжении трех месяцев были: ученица 10 А класса Виктория Шипова и учитель биологии Ольга Анатольевна Пахмутова.

Приложение №2

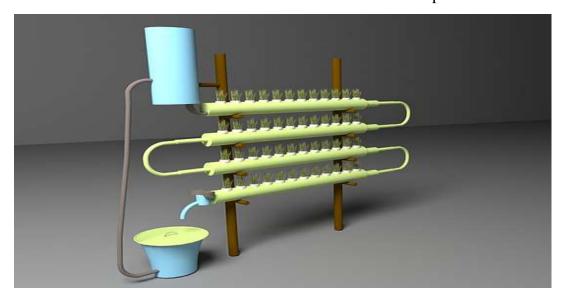


Рис. 1 Модель гидропонной установки

Приложение №3

Рис. 2 Расположение гидропоники в жилом помещении

Приложение № 4

Рис. 3 Основа гидропонной установки

Приложение № 5

Рис. 4 Кабачки, растущие в гидропонике

Приложение № 6

16 день 23 июня. Яркое летнее солнышко радует нас своими лучами. Сегодня мы избрали Таранова Андрея начальником крана. Он пришёл на отработку первый раз, а уже получил такую должность. Наш кран пропал в неизвестном направлении, а Андрей выручил нас и принёс с дома плоскогубцы. Сегодня мы подвязали помидоры, чтобы они росли большие и не падали. Высадили растения из горшков на огород и полили всю нашу расаду

18 день

27 июня. Сегодня у нас прибавление. В ряды вступают ученики 5-х классов. А чем больше рабочих на огороде, тем больше кипит работа. В первой половине нашего дня мы занимались поливом растений и прополкой огорода. Во второй части рабочего дня у нас прошла защита проектов 8-х классов. Нас очень порадовал уровень работ. Ребята подготовили очень качественные работы и хорошо их защитили.

